
1

Teaching Activity “Klemmchat”
Luisa Gebhardt, Marc Leinweber

Institute of Information Security and Dependability (KASTEL)

Karlsruhe Institute of Technology (KIT)

luisa.gebhardt9@kit.edu, marc.leinweber@kit.edu

This document presents the teaching activity as it was performed as part of the study for the paper

“Grasping the Concept of Decentralized Systems for Instant Messaging “1.

The aim of the activity is to teach students the advantages and disadvantages of different centralized

or decentralized algorithms in instant messengers. The focus is on the reliability and power structure

in the instant messengers and their influence on the usage of the instant messenger.

Klemmchat simplifies the complicated algorithms of such instant messengers to convey them to

students without computers and technical knowledge. In doing so, Klemmchat neglects the

confidentiality of the messages and does not use any encryption mechanisms.

Klemmchat simulates a group chat, as it exists in modern messengers, with the help of Duplo bricks,

which are exchanged between groups of students according to rules depending on the respective

simulated algorithm. After a short explanation, the students' task is to manipulate the respective

algorithm to harm the messenger; the students thus play attacker and honest provider and user at the

same time.

Klemmchat can be used and accompanied flexibly in the classroom. This document presents an

exemplary lesson plan for the use of Klemmchat. The following learning objectives are to be achieved

by the students:

The students are able to…

1. … describe the basic functionality of the different algorithms (centralized, distributed,

decentralized) for instant messaging

2. … discuss the trade-offs of the different algorithms

3. … contrast which algorithm to use in a given scenario based on their characteristics

4. … evaluate instant messaging services, based on their underlying algorithm, in different usage

scenarios

Klemmchat Structure
In most cases, communication in a messenger takes place from one user's client to another user's

client. The messenger provider coordinates the message exchange and keeps certain parts of the

service available.

The users' clients are the applications on the devices. The message m from a sender c1 to recipient c2

is thus sent from the app on the smartphone to the server of a provider. This provider stores the

message in the message history between participants c1 and c2. This message history is then regularly

retrieved from the provider by both participants for reading. Message writing and retrieval can be

organized architecturally and politically in different ways. In Klemmchat, a centralized, a distributed

and a decentralized variant are simulated.

1 https://publikationen.bibliothek.kit.edu/1000150316

mailto:luisa.gebhardt9@kit.edu
file:///C:/Users/i2602/Downloads/marc.leinweber@kit.edu
https://publikationen.bibliothek.kit.edu/1000150316

2

Klemmchat needs the following components to simulate the different algorithms:

Participants: A group of three to four students simulates a participant. We do not distinguish

between the user and the application on the device. The students embody both the user and

the application.

Message: A message consists of one or more Duplo bricks with the same sender and

message text. The message text is written on the brick using a whiteboard marker.

Message Sender: The sender of a message is indicated by the color of the message brick.

To make this assignment unique, each group receives bricks in a different color from the other groups.

Message Recipient: Klemmchat simulates a group chat. A message is always addressed to all

participants. Explicit identification of a recipient is not necessary.

Provider: Depending on the respective algorithm, the provider is simulated by other

groups/persons. More details are specified in the paragraph about the respective algorithm.

Message History: The message history is created by appending a received message brick to

the bottom of the previously received message bricks. This creates a tower of message bricks.

If you want to read the content of a message history, you read it from top to bottom by saying

"Color of sender writes message" for each brick.

Write and Read Functions: These functions depend on the respective algorithm. To order

the flow of the algorithms, there are read and write phases. In a write phase only writing is allowed,

in the read phase the message history is read once.

Centralized Algorithm
In the central algorithm, the message history is stored on the server of a provider. This server is played

by the teacher. So, there is only one version of the message history. If this message history is lost or

the server or the teacher is not available or busy, it cannot be read or written.

If a group wants to write, the group labels a brick with the message and comes forward to signal that

a message can be picked up. The teacher then walks to that group and checks to see if the color of the

brick matches the color of the group. If the check is successful, the teacher picks up the brick and takes

it to the desk where the message history is located and attaches the brick to the message history. If

not, the teacher ignores the brick. To read, the teacher reads the message history out loud.

Figure 1: Illustration of the central writing process: The yellow, blue and green groups each write a message. These are

collected by the teacher

The following aspects can be observed by the students:

3

Reliability:

• The teacher is overwhelmed with the number of messages to be processed simultaneously

(susceptibility to DoS attacks).

• It may happen that by mistake the message history is no longer correct.

 The teacher represents a single point of failure with their message history. The instant

messenger is not very reliable, as it often does not work.

Power Structure:

• The teacher can intentionally ignore the messages of a group, even if the sender matches the

color of the brick. They can therefore intentionally discriminate against participants

structurally.

• The teacher can accept faulty messages.

• The teacher can censor or not accept swear words, but also messages that do not have harmful

content. They can arbitrarily censor and moderate content.

• The teacher can also replace the contents of a message with others. In doing so, they can also

pretend to be a participating group.

 The participants in the service must trust that the provider/teacher will act in the interests of

the participants and not exploit their power over the messenger in a self-serving manner. This

form of power distribution can be compared to a monarchy.

Distributed Algorithm
In the distributed algorithm, the message history is stored distributed across multiple servers of a

provider. This server group r is played by a selected group of students. Each student in group r has his

or her own copy of the message history on the console. Thus, there are multiple versions of the

message history. Ideally, these are always the same. The ability for coordination by a single provider is

made possible by agreements within the manageable group of students.

If a participating group wants to write, the group labels one brick per student in group r with the same

message and signals that a message can be picked up. One person in group r then walks to that group

and checks that the color of the bricks matches the color of the group and that the bricks match each

other. If the check is successful, the person picking up the bricks takes them and distributes them to

all the other students in group r. They then take their brick to the desk where the message histories

are located and attach the brick to their message history. Group r ignores the message if the check was

not successful. Multiple messages may be accepted by group r at the same time. This may cause swaps

in the message history. Simple swaps may be resolved manually. Nevertheless, it is important that

students are aware of this problem.

Figure 2: Illustration of the distributed writing process: The light blue, yellow and green groups each write a message. These

are collected by one person in the red server group r. This person then distributes the bricks to everyone else in server

group r.

4

For reading, each person in group r reads the message history. Then the students in group r agree on

one of the message histories as the "correct" history. If there is disagreement, the opinion of the

absolute majority counts. This message history is then used to respond.

The following aspects can be observed by the students:

Reliability:

• The group r can process several messages at the same time.

• If a message history is faulty, this can be corrected by the group r, since other copies of the

history still exist.

• It is possible that there is no completely correct message history.

 The instant messenger is more reliable because there is no longer a single point of failure.

Power Structure:

• The group r can collude and intentionally ignore the messages of a group, even if the color of

the brick matches the sender and the messages match each other.

• The group r can collude and accept faulty messages.

• The group r can collude and censor or not accept swear words. But it is also possible to censor

well-intentioned messages.

• The group r can collude and accept faulty messages.

• Group r can collude and substitute the contents of one message for another, impersonating

another participating group.

 The participants in the service must trust that the provider/group r will act in the interests of

the participants for the benefit of the messenger and will not exploit their power over the

messenger for their own advantage. This form of power distribution can be compared to an

oligarchy.

Other:

• The algorithm is more elaborate and complicated.

Decentralized Algorithm
In the decentralized algorithm, each group plays its own server. Server and client coincide in this

experiment. The message is sent to own servers hosted by the participants, which exchange the

messages with all other servers.

The message history is stored in a distributed manner on the servers of all participants. Each group has

its own copy of the message history on its table. So again, there are multiple versions of the message

history. Ideally, these are always the same. Coordinating all the servers is more difficult because there

is no longer a single provider. Collusion between each group to coordinate the read and write process

is urgently needed if the goals of the messenger are to be met. Because of replication and collusion, a

group cannot single-handedly manipulate the message history at will without the possibility of

correction.

Now, since the bricks of one group can get into the hands of any other group, the color of the bricks

alone is not enough to protect participants from identity theft: a message can be wiped off the brick

and the brick can be reused. Therefore, additional digital signatures in the form of colored tape are

used. Each group or brick color can be assigned the color of a specific adhesive tape. Instead of writing

directly on the brick, a group writes its message on its own tape, which it has previously stuck on the

brick. A message is now only valid if the color of the brick and the color of the tape match the identity

5

of the sender. The message cannot now be removed without leaving a residue, without invalidating

the message, because the tape cannot be wiped off. The tape of one group must never be given to

another group.

If a participating group wants to write, the group labels one brick per other group with the same

message on tape and signals that a message can be picked up at their desk. One person from each

other group then walks to the writing group and checks that the message is valid and that the bricks

match. If the check is successful, each of these people takes the brick to their own table, where the

group's message history is, and attaches the brick to their message history. Otherwise, the group

ignores the message. Again, multiple messages can be accepted by the servers at the same time. This

may cause swaps in the message history. Simple swaps may be resolved manually. Furthermore, it is

important that the students recognize this problem and realize that it is much more difficult to keep

the message histories consistent in this algorithm.

Figure 3: Illustration of the decentralized writing process: The yellow, red and blue groups each write a message. One

person from each other group then picks up one or more messages from the other groups.

To read, a representative from each group reads their own message history. Then the representatives

of each group agree on one of the message histories as the "correct" history. If there is disagreement,

the opinion of the absolute majority counts. This message history is then used to respond.

The following aspects can be observed by the students:

Reliability:

• The servers can handle multiple messages at the same time.

• If a message history breaks, this can be corrected since other copies of the history still exist.

• It is possible that there is no completely correct message history.

 The instant messenger is more reliable because there is no longer a single point of failure.

However, settlement can be more difficult and it is less likely that there will be an error-free

process.

Power Structure:

• The majority of groups must coordinate to accept faulty messages, reject correct messages,

but also to censor swear words.

• Censorship or moderation of content is now only possible with difficulty, since majority

decisions are always necessary. Due to the lack of moderation, individual participants can be

discriminated against by other, few participants in chat messages.

• Due to the signatures, the message content cannot be changed afterwards.

 The participants in the service no longer have to trust that a provider will act in the interests of

the participants, and the exploitation of power by individual providers is ruled out. The

necessary trust is placed in the majority of a federation instead of in individuals. This form of

power is comparable to a democracy.

6

Other:

• Due to the coordination between the groups and the redundant work to be done by the

groups, the algorithm is more elaborate and complicated than the centralized and the

distributed variants.

Remark:

Instead of reading the message histories aloud, they can be held under a visualizer or document

camera. It is only important that the students can perceive the message histories. In this case, it is

also possible that something else is read during the reading out than is actually written in the history.

Attacks that are not observed by students serve no purpose in Klemmchat.

Lesson plan for the Exemplary Embedding of Klemmchat
In the following table, an exemplary teaching structure is given, which teaches the algorithms

described above and the associated learning objectives. It is intended for students in the 10th grade

and above. In particular, it is helpful if the students already have knowledge about the distribution of

power in political systems.

The time allotted is very tight; it is worthwhile to extend and give more space to the individual

experiments and discussions.

Time Phase Content Activity

00:00
5 min

Introduction Welcome, objectives of the lesson, introductory
question about the messengers used by the
students.

Teacher-
student
discussion

00:05
10 min

 Explanation of the basic structure of a
messenger and terminal chat, note on the lack of
encryption.

Lecture

00:15
5 min

Experiment 1:
Introduction

Explanation of the centralized algorithm Lecture

00:20
10 min

Development Simulate the central algorithm in several rounds.
Each round consists of a writing phase and a
reading phase. After each round, all noticeable
features are collected. In addition, the
messenger can be reset (return bricks). In the
first round, no manipulation attempts should be
made yet. In the following rounds, features
described above should be discovered
exploratively. The teacher can provide support
here.

Teamwork

00:30
5 min

Consolidation Summary of striking features. The central
position and trust in the provider as well as the
connection to power distribution are to be
emphasized.

Teacher-
student
discussion

00:35
5 min

Experiment 2:
Introduction

Explanation of the distributed algorithm Lecture

00:40
10 min

Development Simulate the distributed algorithm in several
rounds (see centralized algorithm).

Teamwork

7

00:50
10 min

Consolidation Summary of the striking features. It is important
that differences and similarities are identified in
comparison to the previous algorithm.

Teacher-
student
discussion

01:00
5 min

Experiment 3:
Introduction

Explanation of the decentralized algorithm Lecture

01:05
10 min

Development Simulate the decentralized algorithm in several
rounds (see centralized algorithm).

Teamwork

01:15
5 min

Consolidation Summary of striking features. It is important to
identify differences and similarities by
comparing them to the two previous algorithms.

Teacher-
student
discussion

01:20
10 min

Conclusion Reflection questions:

• Which algorithm would the students choose
for their own messenger? Why?

• What algorithm do the messengers use that
were initially named by the students?

• Does what is learned influence the students'
usage decisions?

Teacher-
student
discussion

